Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xue-Qiao Jia and Guang-Ming Yang*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: yanggm@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.005 Å R factor = 0.039 wR factor = 0.104 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 2 November 2005

Online 23 November 2005

Accepted 14 November 2005

A new nickel(II) complex, $[NiL] \cdot CH_3OH$, where H_2L is 2-phenyl-3,10,18,21-tetraazatetracyclo-[20.4.0.0^{4,9}.0^{12,17}]hexacosa-2,10,12,14,16,22,24,26octaene-19,20-dionate(2–)

In the title compound, [2-phenyl-3,10,18,21-tetraazatetracyclo[20.4.0.0^{4,9}.0^{12,17}]hexacosa-2,10,12,14,16,22,24,26-octaene-19,20-dionato(2–)]copper(II) methanol solvate, [Cu(C₃₄H₂₈N₄O₂)]·CH₃OH, the Ni^{II} atom is coordinated by four N atoms from the doubly deprotonated tetraaza ligand, L^{2-} , in a square-planar coordination geometry. O–H···O hydrogen bonds link the complex to the methanol solvent molecule.

Comment

Investigation of the structures and properties of macrocyclic transition metal complexes has become a fascinating subject in the field of coordination chemistry, biology and materials science. At the same time, it has been found that oxamide bridges serve as a pathway through which electron spin interaction takes place (Wang *et al.*, 2004). With these facts in mind, we have synthesized the title new complex, [NiL]-CH₃OH, (I), and its structure is reported here.

The macrocyclic ligand, L^{2-} , coordinates to the Ni^{II} ion *via* two deprotonated oxamide N atoms and two imine N atoms in a square-planar geometry. The Ni^{II} ion is displaced from the least-squares plane of the four N donor atoms by 0.0336 (12) Å; deviations from this mean plane are 0.0801 (11) for atom N1, 0.0777 (11) for atom N2, 0.0765 (11) for atom N3 and -0.0790 (11) Å for atom N4.

In the crystal structure, $O-H\cdots O$ hydrogen bonds link the complex to the methanol solvent molecule and additional nonclassical $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds further stabilize the structure.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

Experimental

The synthesis of the ligand L' [L' = 2,2'-(oxalyldiimino)bis-(benzaldehyde)] was described previously by Zhang et al. (2005). A mixture of L' (0.446 g, 1 mmol), 1,2-diaminocyclohexane (1 mmol) and Ni(OAc)₂·4H₂O (0.248 g, 1 mmol) was refluxed for 10 h in MeOH (25 ml) in the presence of 2 M NaOH (1 ml). Red crystals of (I) suitable for X-ray analysis were grown at room temperature from an aqueous methanol solution (1:1 v/v).

Crvstal data

er jour aana	
$[Ni(C_{34}H_{28}N_4O_2)] \cdot CH_4O$ $M_r = 615.36$ Triclinic, $P\overline{1}$ $a = 10.1790 (15) \text{ Å}$ $b = 12.5659 (18) \text{ Å}$ $c = 12.8305 (19) \text{ Å}$ $\alpha = 71.764 (2)^{\circ}$ $\beta = 83.782 (3)^{\circ}$ $\gamma = 73.156 (2)^{\circ}$ $V = 1491.5 (4) \text{ Å}^{3}$	Z = 2 $D_x = 1.370 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2957 reflections $\theta = 2.5 - 25.6^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 294 (2) K Block, red $0.26 \times 0.20 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.750, T_{\max} = 0.908$ 7640 measured reflections	5216 independent reflections 3953 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 9$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.104$ S = 1.02 5216 reflections 390 parameters H-atom parameters constrained	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0548P)^{2} + 0.188P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Figure 2

A packing diagram for (I), with hydrogen bonds drawn as dashed lines. H atoms have been omitted.

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	1.855 (2)	Ni1-N3	1.887 (2)
Ni1-N2	1.854 (2)	Ni1-N4	1.854 (2)
N1-Ni1-N3	177.07 (10)	N2-Ni1-N4	172.89 (10)
N2-Ni1-N1	86.88 (9)	N4-Ni1-N1	91.56 (9)
N2-Ni1-N3	94.35 (9)	N4-Ni1-N3	87.55 (9)

able	2	
Judro	non	ho

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2 ⁱ	0.82	2.17	2.862 (3)	143
$O3-H3\cdots O1^i$	0.82	2.46	3.169 (4)	145
C5-H5···O3 ⁱⁱ	0.93	2.88	3.675 (5)	144
$C15-H15\cdots N2^{ii}$	0.93	2.94	3.558 (4)	125
C12−H12···O3 ⁱⁱⁱ	0.93	2.65	3.556 (5)	164
C13−H13···O1 ^{iv}	0.93	2.55	3.349 (4)	145
$C19-H19A\cdots O3^{v}$	0.97	2.99	3.865 (5)	151
$C27-H27\cdots O1^{vi}$	0.93	2.55	3.409 (4)	153
$C35-H35C\cdots O2^{i}$	0.96	2.48	3.074 (5)	120

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 2; (iii) x - 1, y, z; (iv) x - 1, y + 1, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 2, -y, -z + 1.

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H, C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂ and C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃, and with O – H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$ for the OH group.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, S.-B., Yang, G.-M., Liao, D.-Z. & Li, L.-C. (2004). Inorg. Chem. 43, 852–854.
- Zhang, R.-H., Wang, Q.-L., Wang, Y.-F., Yang, G.-M., Liu, Z.-Q., Ding, B. & Xu, G.-F. (2005). *J. Coord. Chem.* **58**, 857–862.